منابع مشابه
compactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولMultipliers on Weighted Besov Spaces of Analytic Functions
We characterize the space of multipliers between certain weighted Besov spaces of analytic functions. This extend and give a new proof of a result of Wojtaszczyk about multipliers between Bergman spaces. Introduction. P. Wojtaszczyk [W], using certain factorization theorems due to Maurey and Grothendieck, proved the following results: Let α > 0, 0 < p ≤ 2 ≤ q < ∞ and 1r = 1 p − 1q . (0.1) (Bq, ...
متن کاملArens regularity of bilinear forms and unital Banach module spaces
Assume that $A$, $B$ are Banach algebras and that $m:Atimes Brightarrow B$, $m^prime:Atimes Arightarrow B$ are bounded bilinear mappings. We study the relationships between Arens regularity of $m$, $m^prime$ and the Banach algebras $A$, $B$. For a Banach $A$-bimodule $B$, we show that $B$ factors with respect to $A$ if and only if $B^{**}$ is unital as an $A^{**}$-module. Le...
متن کاملOn the boundedness of bilinear operators on products of Besov and Lebesgue spaces
We prove mapping properties of the form T : Ḃ11 p1 × L p2 → Ḃ22 p3 and T : Ḃ11 p1 × Ḃ α2,q2 p2 → L p3 , for certain related indices p1, p2, p3, q1, q2, α1, α2 ∈ R, where T is a bilinear Hörmander-Mihlin multiplier or a molecular paraproduct. Applications to bilinear Littlewood-Paley theory are discussed.
متن کاملMultidimensional Lévy White Noise in Weighted Besov Spaces
In this paper, we study the Besov regularity of a general d-dimensional Lévy white noise. More precisely, we describe new sample paths properties of a given noise in terms of weighted Besov spaces. In particular, we characterize the smoothness and integrability properties of the noise using the indices introduced by Blumenthal, Getoor, and Pruitt. Our techniques rely on wavelet methods and gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 2016
ISSN: 0025-5645
DOI: 10.2969/jmsj/06810383